REML estimation of variance parameters in nonlinear mixed effects models using the SAEM algorithm.

نویسندگان

  • Cristian Meza
  • Florence Jaffrézic
  • Jean-Louis Foulley
چکیده

Nonlinear mixed effects models are now widely used in biometrical studies, especially in pharmacokinetic research or for the analysis of growth traits for agricultural and laboratory species. Most of these studies, however, are often based on ML estimation procedures, which are known to be biased downwards. A few REML extensions have been proposed, but only for approximated methods. The aim of this paper is to present a REML implementation for nonlinear mixed effects models within an exact estimation scheme, based on an integration of the fixed effects and a stochastic estimation procedure. This method was implemented via a stochastic EM, namely the SAEM algorithm. The simulation study showed that the proposed REML estimation procedure considerably reduced the bias observed with the ML estimation, as well as the residual mean squared error of the variance parameter estimations, especially in the unbalanced cases. ML and REML based estimators of fixed effects were also compared via simulation. Although the two kinds of estimates were very close in terms of bias and mean square error, predictions of individual profiles were clearly improved when using REML vs. ML. An application of this estimation procedure is presented for the modelling of growth in lines of chicken.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation in the probit normal model for binary outcomes using the SAEM algorithm

Generalized linear mixed models (GLMM) form a very general class of random effects models for discrete and continuous responses in the exponential family. They are useful in a variety of applications. The traditional likelihood approach for GLMM usually involves high dimensional integrations which are computationally intensive. In this work, we investigate the case of binary outcomes analyzed u...

متن کامل

Extension of the SAEM algorithm for nonlinear mixed models with two levels of random effects

This article focuses on parameter estimation of multi-levels nonlinear mixed effects models (MNLMEMs). These models are used to analyze data presenting multiple hierarchical levels of grouping (cluster data, clinical trials with several observation periods,...). The variability of the individual parameters of the regression function is thus decomposed as a between-subject variability and higher...

متن کامل

Quantile Regression for Nonlinear Mixed Effects Models: A Likelihood Based Perspective

Longitudinal data are frequently analyzed using normal mixed effects models. Moreover, the traditional estimation methods are based on mean regression, which leads to non-robust parameter estimation for non-normal error distributions. Compared to the conventional mean regression approach, quantile regression (QR) can characterize the entire conditional distribution of the outcome variable and i...

متن کامل

On using generalized Cramér-Rao inequality to REML estimation in linear models

The main aim of considerations in the problem of estimation of variance components σ 1 and σ 2 2 by using the ML-method and REML-method in normal mixed linear model N{Y, E(Y ) = Xβ, Cov(Y ) = σ 1V + σ 2In} was concerned in the examination of theirs efficiency. It is particularly important when an explicit form of these estimators is unknown and we search for the solutions of the likelihood equa...

متن کامل

Extension of the SAEM algorithm for nonlinear mixed models with 2 levels of random effects.

This article focuses on parameter estimation of multilevel nonlinear mixed-effects models (MNLMEMs). These models are used to analyze data presenting multiple hierarchical levels of grouping (cluster data, clinical trials with several observation periods, ...). The variability of the individual parameters of the regression function is thus decomposed as a between-subject variability and higher ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrical journal. Biometrische Zeitschrift

دوره 49 6  شماره 

صفحات  -

تاریخ انتشار 2007